1. (15) On the grid provided above, sketch a graph of one function \(y = f(x) \) with the following properties.

 a) The domain of \(f(x) \) is \([-5, 5]\)
 b) The range of \(f(x) \) is \([0, \infty)\)
 c) \(\lim_{x \to 2} f(x) = 4 \)
 d) \(f(2) < 0 \)
 e) The tangent line to the graph at \(x = 4 \) is \(y - 3 = -(x - 4) \)
 f) \(\lim_{x \to -3^+} f(x) = 2 \)
 g) \(\lim_{x \to -3^-} f(x) = 5 \)

2. (10) The graph of \(y = g(x) \) is provided above.

 a) Indicate on the \(x \)-axis a value \(c \) where the average rate of change on the interval \([3, c]\) is approximately \(\frac{1}{2} \).
 b) For which values of \(a \) is the function \(h(x) = \frac{g(x)}{(g(x))^2 - 4} \) discontinuous at \(x = a \)?
 c) Does the limit

 \[
 \lim_{x \to 2} \frac{1}{2 - \sqrt{g(x)}}
 \]

 exist? Explain.
3. (25) Let

\[f(x) = \sqrt{2x + 1}. \]

a) Find, by definition, \(f'(a) \).

b) Find the equation of the tangent line to the graph of \(y = f(x) \) at the point \(x = 4 \).

4. (15) Determine the following limits

\[
\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4} \quad \lim_{x \to 4} \frac{x^3 - 8}{x - 4} \quad \lim_{x \to 3} \frac{x^3 - 8}{x - 4}
\]

5. (10) Show that \(x^5 - 4x = -2 \) has a solution for some number \(x \) in the interval \((0,1)\). Explain your reasoning briefly, but thoroughly.

6. a) (5) What is the definition of \(f(x) \) is continuous at \(x = a \)?

b) (10) At which points is the following function discontinuous? Explain your answer thoroughly.

\[
f(x) = \begin{cases}
 x^4 - 9x, & x < 2 \\
 2x^2 - 10, & 2 \leq x < 5 \\
 \frac{16x}{7-x}, & x > 5
\end{cases}
\]