Solution to Quiz 4. Find the volume bounded by the surfaces \(y = x^2, \)
\(z = 0 \) and \(y + z = 1. \)

The planes \(z = 0 \) and \(y + z = 1 \) meet where \(y = 1 \) in the plane \(z = 0. \) So that’s the line \(y = 1 \) in the \(xy \)-plane. This gives us our shadow in the \(xy \)-plane: the region between \(y = x^2 \) and \(y = 1. \) We note that over this region, \(y + z = 1 \) or \(z = 1 - y \) is higher than \(z = 0. \) So \(z \) goes from 0 to \(1 - y. \) For the shadow, positive \(y \) arrows enter on \(y = x^2 \) and exit on \(y = 1. \) The extreme \(x \)-values are where \(y = x^2 \) meets \(y = 1, \) i.e. at \(x = \pm 1. \) So we have volume =

\[
\int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} dz\,dy\,dx = \int_{-1}^{1} \int_{x^2}^{1} 1 - y \, dy\,dx = \int_{-1}^{1} y - \frac{y^2}{2} \bigg|_{x^2}^{1} \, dx
\]

\[
\int_{-1}^{1} \left[1 - \frac{1}{2} \right] - \left[x^2 - \frac{x^4}{2} \right] \, dx = \frac{1}{2} \int_{-1}^{1} x - \frac{x^3}{3} + \frac{x^5}{10} \, dx
\]

\[
= \left[\frac{1}{2} - \frac{1}{3} + \frac{1}{10} \right] - \left[\frac{1}{2} + \frac{1}{3} - \frac{1}{10} \right] = \frac{8}{15}.
\]