Quiz 2. For \(f(x, y) = \frac{1}{2x+y+1} \) you leave \((0, 1)\) in the direction \(3i + 4j\). About how far would you have to go for \(f \) to decrease by 1?

Solution. Let’s find the directional derivative of \(f \) at \((0, 1)\) in the direction of \(3i + 4j\). That’s denoted \(D_u f(0, 1) \) where \(u \) is the unit vector pointing in the same direction as \(3i + 4j\). That can be computed by \(\vec{\nabla} f(0, 1) \cdot \vec{u} \).

Let’s first find \(\vec{\nabla} f = f_x i + f_y j \). Now \(f = (2x + y + 1)^{-1} \) so \(f_x = -1(2x + y + 1)^{-2}(2) = \frac{-2}{(2x+y+1)^2} \). Also \(f_y = -1(2x + y + 1)^{-2}(1) = \frac{-1}{(2x+y+1)^2} \). So \(\vec{\nabla} f = \frac{-2}{(2x+y+1)^2} i + \frac{-1}{(2x+y+1)^2} j \) and \(\vec{\nabla} f(0, 1) = -\frac{1}{2} i - \frac{1}{4} j \).

Now \(u \) is the unit vector pointing in the same direction as \(3i + 4j\). Since \(|3i + 4j| = \sqrt{3^2 + 4^2} = 5\) then \(u = \frac{3}{5} i + \frac{4}{5} j \). Now \(D_u f(0, 1) = \vec{\nabla} f(0, 1) \cdot u = (-\frac{1}{2} i - \frac{1}{4} j) \cdot (\frac{3}{5} i + \frac{4}{5} j) = (-\frac{1}{2})(\frac{3}{5}) + (-\frac{1}{4})(\frac{4}{5}) = -\frac{1}{2} \).

Now how far do we have to go in order for the function to decrease by about 1? Answer 1: The directional derivative is \(-\frac{1}{2}\). So that means for every 1 you move, the function decreases about \(\frac{1}{2}\), so move 2. Answer 2: We let \(s \) measure distance moved from \((0, 1)\) in the direction \(u\). Then \(-\frac{1}{2} = \frac{df}{ds} \approx \frac{\Delta f}{\Delta s} = \frac{-1}{\Delta s} \). So \(-\frac{1}{2} \approx \frac{-1}{\Delta s} \). Thus \(\Delta s \approx 2\).