Overview

In your calculus class, you were told something like this:

A function is a rule that assigns a unique number, called the output value, to every number that lies within a specified domain.

Did you wonder: “What do they mean by rule? What is a domain?” In this section, we will formalize the function concept, using our vocabulary of sets and relations.

Functions defined

Recall that a relation between sets \mathcal{A} and \mathcal{B} is nothing more than a subset of the Cartesian product,

$$ R \subset \mathcal{A} \times \mathcal{B}. $$

A relation f is called a function from \mathcal{A} to \mathcal{B} if it satisfies this additional property:

$$ \forall a \in \mathcal{A} \forall b_1, b_2 \in \mathcal{B} \quad [(a, b_1) \in f \land (a, b_2) \in f] \rightarrow (b_1 = b_2). $$

In class, this was stated in the less intuitive notation:

$$ \neg \exists a \in \mathcal{A} \exists b_1, b_2 \in \mathcal{B} \quad (b_1 \neq b_2) \land [(a, b_1) \in f \land (a, b_2) \in f]. $$

These become easier to read if we use the popular shorthand (introduced by Euler): $f(a) = b$ means $(a, b) \in f$. The first one says, “Whenever $f(a) = b_1$ and $f(a) = b_2$, we have $b_1 = b_2$.” The second one says, “It is impossible for $f(a)$ to be b_1 and $f(a)$ to be b_2 when $b_1 \neq b_2$.” In either case, they fit with the intuitive idea that f assigns a unique b to every a in (a subset of) \mathcal{A}.

To explain the parenthetical remark in the last sentence, consider that we want to call $f(x) = \sqrt{x}$ a “real-valued function of a real variable,” even
though it does not assign a value to the real number $x = -2$. Thus, in the formal definition, it is not required that $f(a)$ be defined for every a in \mathcal{A}. All that is required is that $f(a)$ must have a unique definition if it is defined at all.

Notice that in the case of real-valued functions of a real variable, the formal definition of function is exactly what you learned to call the graph of a function, namely, the set

$$\{(x, f(x)) \mid x \in \mathcal{D}_f\} \subset \mathbb{R} \times \mathbb{R}.$$

You may remember learning the “vertical line test” for functions; to say that only one $f(a)$ is related to any a is the same as requiring that any vertical line in the plane meets the graph at most once.

Since $f(a)$ is uniquely defined by the function f, we often say that function assigns the the output value $f(a)$ to the input value a. Other popular terminology refers to a as the argument of the function and $f(a)$ the value of the function.

In a case where f may not be defined for every element of \mathcal{A}, we may wish to identify the set of values for which $f(a)$ is defined. This is called the domain of the function, formally defined as follows:

$$\mathcal{D}_f = \{a \in \mathcal{A} \mid \exists b \in \mathcal{B} \ f(a) = b\}.$$

Similarly, the range of a function is the following subset of \mathcal{B}:

$$\mathcal{R}_f = \{b \in \mathcal{B} \mid \exists a \in \mathcal{A} \ f(a) = b\}.$$

A shorthand notation for a function f with domain \mathcal{A} and range $\mathcal{R}_f \subset \mathcal{B}$ is:

$$f : \mathcal{A} \rightarrow \mathcal{B}.$$

Note that this notation implies that $f(a)$ is defined for every $a \in \mathcal{A}$, but does not tell us exactly what the range of f is. Finally, when it is understood that the variable a represents elements of the set \mathcal{A}, we often say “f is a function of a” to mean that f has domain \mathcal{A}. This way of speaking is a little vague, because it is not explicit about the set \mathcal{B} in which $f(a)$ lies. But no one ever seems to be greatly confused by this.
Examples

The simplest examples that come to mind involve real numbers. For instance, the functions \(f(x) = x^2 \), \(g(x) = 2x \), and \(h(x) = \sqrt{x} \) have been familiar to most students for many years.

For a more interesting example, first, define the greatest common divisor of two natural numbers \(n \) and \(m \), denoted \(\text{gcd}(n, m) \), to be the largest natural number \(d \) such that \(d \mid n \) and \(d \mid m \). (This is a function whose domain is \(\mathbb{N} \times \mathbb{N} \) and whose range is \(\mathbb{N} \).)

The Euler \(\phi \) function, which has domain \(\mathbb{N} \), is defined by

\[
\phi(n) = \text{the number of natural numbers } k \leq n, \text{ with } \text{gcd}(k, n) = 1.
\]

One consequence of this definition is that \(\phi(n) \) is the number of fractions in lowest terms in the interval \((0, 1]\) with denominator \(n \). For example, \(\phi(8) = 4 \), corresponding to the four fractions \(1/8, 3/8, 5/8, \) and \(7/8 \). Also note that \(\phi(1) = 1 \).

A cute property of the Euler \(\phi \) function is that

\[
\sum_{d \mid n} \phi(d) = n.
\]

This follows from counting the \(n \) fractions \(\{1/n, 2/n, 3/n, \ldots, n/n\} \) in clusters, putting all the ones with denominator \(d \) together in a cluster. In the example \(n = 8 \), there are four fractions with denominator 8, as shown above, two with denominator 4, only one with denominator 2, and, finally, 1/1 with denominator 1.