Math 123 Spring 2017 Midterm 3: You may use 2 cheat sheets, a calculator, and the T- table provided.

1. Let \(SSE = \sum_{i=1}^{n}(y_i - \hat{y}_i)^2 = \sum_{i=1}^{n}(y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2 \)
 a. Derive a formula for \(\hat{\beta}_0 \) and \(\hat{\beta}_1 \) by taking the partial derivatives of \(SSE \) with respect to \(\hat{\beta}_0 \) and \(\hat{\beta}_1 \) and setting them to zero. (Do not leave your answer in matrix form.)
 b. Assume \(\hat{\beta}_0 \) and \(\hat{\beta}_1 \) are independent. Find a formula for \(\hat{\beta}_0 \) and \(\hat{\beta}_1 \). (Hint: What happens to \(\sum_{i=1}^{n} x_i \) if \(\hat{\beta}_0 \) and \(\hat{\beta}_1 \) are independent?)

2. Assume \(\hat{\beta} = (X^T X)^{-1} X^T Y \) and \(Y = X\beta + \varepsilon \) where \(E(\varepsilon) = 0 \).
 a. Show that \(\hat{\beta} \) is an unbiased estimator of \(\beta \).
 b. Assume \(\varepsilon \) is a normal random variable with independent components \(\varepsilon_i \) such that \(E(\varepsilon_i) = 0 \) and \(V(\varepsilon_i) = \sigma^2 \). Explain why \(\hat{\beta} \) is a normal random variable.

3. For the following data points:
 \[
 \begin{array}{c|c}
 x & y \\
 \hline
 0 & 0 \\
 1 & 0 \\
 2 & 1 \\
 3 & 1 \\
 \end{array}
 \]
 a. Fit the linear model \(Y = \beta_0 + \beta_1 x + \varepsilon \) to the data points in the above table.
 b. Find \(Cov(\hat{\beta}) \) and \(SSE \).
 c. Test the null hypothesis that the slope \(\beta_1 \) is zero against the alternative hypothesis that the slope \(\beta_1 \) is nonzero. Use \(\alpha = 0.05 \).

4. Fit the quadratic model \(Y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon \) to the data points in the following table.
 Show your work in finding the inverse of the matrix \(X^T X \).
 \[
 \begin{array}{c|c}
 x & y \\
 \hline
 -1 & 2 \\
 0 & 0 \\
 1 & 1 \\
 \end{array}
 \]