Summary of Ch 11

Multiple Linear Regression:

For \(Y = X \beta + \epsilon \), where \(\hat{y}_i = \hat{\beta}_0 x_{i0} + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \cdots + \hat{\beta}_k x_{ik} \) is our estimator for \(E(Y_i) \)

We have:

\[
\hat{\beta} = (X^T X)^{-1} X^T Y
\]

\[
\text{Cov}(\hat{\beta}) = \sigma^2 (X^T X)^{-1}
\]

\[
SSE = Y^T Y - \hat{\beta}^T X^T Y
\]

\[
S^2 = \frac{SSE}{n-(k+1)}
\]

Simple Linear Regression:

For \(y = \beta_0 + \beta_1 x + \epsilon \), where \(\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i \) is our estimator for \(E(Y_i) \) (i.e., \(k=1 \) & \(x_{i0} = 1 \))

We have:

\[
\hat{\beta} = \left[\sum_{i=1}^{n} x_i^2 \right]^{-1} \left[\sum_{i=1}^{n} x_i y_i \right] = \frac{1}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} \left[\begin{bmatrix} \sum_{i=1}^{n} x_i^2 & -\sum_{i=1}^{n} x_i \\ -\sum_{i=1}^{n} x_i & n \end{bmatrix} \right] \left[\begin{bmatrix} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} x_i y_i \end{bmatrix} \right]
\]

\[
\text{Cov}(\hat{\beta}) = \sigma^2 \begin{bmatrix} \frac{\sum_{i=1}^{n} x_i^2}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} & -\frac{\sum_{i=1}^{n} x_i}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} \\ -\frac{\sum_{i=1}^{n} x_i}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} & \frac{n}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} \end{bmatrix} = \sigma^2 \begin{bmatrix} C_{00} & C_{01} \\ C_{10} & C_{11} \end{bmatrix} = \begin{bmatrix} \text{V}(\hat{\beta}_0) & \text{Cov}(\hat{\beta}_0, \hat{\beta}_1) \\ \text{Cov}(\hat{\beta}_0, \hat{\beta}_1) & \text{V}(\hat{\beta}_1) \end{bmatrix}
\]

\[
SSE = \sum_{i=1}^{n} y_i^2 - \hat{\beta}^T \left[\begin{bmatrix} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} x_i y_i \end{bmatrix} \right]
\]

\[
S^2 = \frac{SSE}{n-2}
\]

Hypothesis testing: \(T = \frac{\hat{\beta}_i - \beta_{0i}}{S \sqrt{C_{ii}}} \) has a \(T \) distribution with \(n-2 \) df.
Recall for large samples, we can estimate \(\mu_1 - \mu_2 \) using

\[
Z = \frac{(\bar{Y}_1 - \bar{Y}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}}}
\]

What if we have small samples instead? Not technically ok to plug in

\[
\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}
\]

because 1) we can plug in \(S^2 \) for \(\sigma^2 \) when \(n \) is large
2) \(T_{n-1} = \frac{\bar{Y}_1 - \mu}{S/\sqrt{n}} \), so if we plug in \(S \), is this \(T \)?

Solution: Assume \(\sigma_1^2 = \sigma_2^2 = \sigma^2 \)

Then

\[
Z = \frac{(\bar{Y}_1 - \bar{Y}_2) - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}
\]

Since \(\sigma^2 \) is unknown, need to find estimator for \(\sigma^2 \). (Perhaps some \(\Phi \) of \(S_1^2 \) or \(S_2^2 \)?)

Let \(Y_{11}, Y_{12}, \ldots, Y_{n_1} \) and \(Y_{21}, Y_{22}, \ldots, Y_{n_2} \) be independent random samples of sizes \(n_1 \) & \(n_2 \) from normal populations.

Let \(\bar{Y}_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} Y_{1i} \) & \(\bar{Y}_2 = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_{2i} \)

Then the pooled estimator \(S^2 = \frac{\sum_{i=1}^{n_1} (Y_{1i} - \bar{Y}_1)^2 + \sum_{i=1}^{n_2} (Y_{2i} - \bar{Y}_2)^2}{n_1+n_2-2} \)

\(= \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2} \)

Notice \(S^2 \) is a weighted average of \(S_1^2 \) & \(S_2^2 \)

Then

\[
T = \frac{(\bar{Y}_1 - \bar{Y}_2) - (\mu_1 - \mu_2)}{S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \quad \text{with} \quad n_1 + n_2 - 2 \quad \text{d.f}
\]

Proof: Let \(W = (n_1+n_2-2)S^2 \)

\[
W = \frac{\sum_{i=1}^{n_1} (Y_{1i} - \bar{Y}_1)^2 + \sum_{i=1}^{n_2} (Y_{2i} - \bar{Y}_2)^2}{\sigma^2} = \chi^2_{n_1-1} + \chi^2_{n_2-1}
\]

Recall MGF for \(\chi^2_n = \frac{1}{(1-2\psi)^{n/2}} \) & when you add RVs, the MGFs multiply (from Theorem 6.2)

So we have

\[
W = \frac{1}{(1-2t)^{n_1+n_2-2}} = \chi^2_{n_1+n_2-2}
\]

So \(W \) has a \(\chi^2 \) dist with \(n_1-1 + n_2-1 = n_1 + n_2 - 2 \) d.f.

Then

\[
T = \frac{Z}{\sqrt{\frac{W}{n_1+n_2-2}}} = \frac{(\bar{Y}_1 - \bar{Y}_2) - (\mu_1 - \mu_2)}{S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \quad \text{with} \quad n_1 + n_2 - 2 \quad \text{d.f}
\]
13.1-13.2 The Analysis of Variance Procedure

ANOVA: analysis of variance

* attempts to analyze the variation in a set of responses and assigns portions of this variation to each variable in a set of independent variables
* objective: identify important independent variables and determine how they affect the response
* Partitions \(\sum_{i=1}^{k} (y_{i} - \bar{y})^2 \) (called total sum of squares) into parts, each of which is attributed to one of the independent variables in the experiment, plus a remainder associated with random error
* Each of the pieces of the total sum of squares (divided by appropriate constant) provides an independent and unbiased estimator of \(\sigma^2 \)
* When a variable is highly related to the response, its portion of the total sum of squares will be inflated
* can be detected by comparing the sum of squares for the variable with the sum of squares for error (SSE)

Method: Suppose we want to compare the means of two normally distributed populations (of sample size \(n_1 = n_2 \)) with means \(\mu_1 \) and \(\mu_2 \) and with equal variances \(\sigma_1^2 = \sigma_2^2 = \sigma^2 \)

* Previously: used T test for \(\bar{Y}_1 - \bar{Y}_2 \)
* Now: Look at SS:

\[
\text{Total } \text{SS} = \sum_{i=1}^{2} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y})^2 = \sum_{i=1}^{2} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_i)^2
\]

where \(Y_{ij} \) is \(j \)th observation in \(i \)th sample and \(\bar{Y} \) is mean of all \(n = 2n_1 \) observations

Can rewrite this as (proof in Sec 13.6):

\[
\underbrace{n_1 \sum_{i=1}^{2} (\bar{Y}_i - \bar{Y})^2}_{\text{call this } \text{SST} \text{ treatment}} \quad \quad \underbrace{\sum_{i=1}^{2} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_i)^2}_{\text{call this } \text{SSE} \text{ error}}
\]

where \(\bar{Y}_i \) = average of observations in \(i \)th sample for \(i = 1, 2 \)

First examine \(\text{SSE} = \sum_{i=1}^{2} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_i)^2 = \sum_{i=1}^{2} (n_i - 1) S_i^2 = (n_1 - 1) S_1^2 + (n_2 - 1) S_2^2 \)

where \(S_i^2 = \frac{1}{n_i - 1} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_i)^2 \)

Recall pooled estimator \(S_p^2 = \frac{(n_1 - 1) S_1^2 + (n_2 - 1) S_2^2}{n_1 + n_2 - 2} = \frac{(n_1 - 1) S_1^2 + (n_2 - 1) S_2^2}{n_1 + n_2 - 2} = \frac{\text{SSE}}{n_1 + n_2 - 2} \)
Next examine \(\text{SST} = n_1 \sum_{i=1}^{n_1} (\bar{Y}_{i} - \bar{Y})^2 = \frac{n_1}{2} (\bar{Y}_1 - \bar{Y}_2)^2 \)

This will be large if \(|\bar{Y}_1 - \bar{Y}_2| \) is large, hence, the larger \(\text{SST} \) is, the greater will be the weight of evidence to indicate a significant difference between \(M_1 \) & \(M_2 \).

Q: When will \(\text{SST} \) be large enough to indicate a significant difference between \(M_1 \) & \(M_2 \)?

Recall we assumed \(\bar{Y}_{ij} \) normally dist w/ \(E(\bar{Y}_{ij}) = M_i \) for \(i = 1, 2 \) and \(\text{VC}(\bar{Y}_{ij}) = \sigma^2 \) & \(\text{SSE}/(2n_1-2) = S_p^2 \) (unbiased).

So \(E\left(\frac{\text{SSE}}{2n_1-2}\right) = \sigma^2 \)

Thus \(\frac{\text{SSE}}{\sigma^2} = \sum_{j=1}^{n_1} \frac{(\bar{Y}_{ij} - \bar{Y})^2}{\sigma^2} + \sum_{j=1}^{n_1} \frac{(\bar{Y}_{ij} - \bar{Y}_j)^2}{\sigma^2} \) has a \(\chi^2 \) dist with \(2n_1-2 \) df.

In Sec 13.6, obtain \(E(\text{SST}) = \sigma^2 + \frac{n_1}{2} (M_1 - M_2)^2 \)

\(\rightarrow \text{SST} \) estimates \(\sigma^2 \) if \(M_1 = M_2 \) and something > \(\sigma^2 \) if \(M_1 \neq M_2 \).

Hypothesis testing:

\(H_0: M_1 = M_2 \)

\(H_a: M_1 \neq M_2 \)

Then \(Z = \frac{\bar{Y}_1 - \bar{Y}_2}{\sqrt{2\sigma^2/n_1}} \) has a stand normal dist (Why? \(\bar{Y}_{ij} \) normally dist, \(M_1 - M_2 = 0 \),

and \(\text{VC}(\bar{Y}_1 - \bar{Y}_2) = \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_1} = 2\frac{\sigma^2}{n_1} \))

Thus \(Z^2 = \left(\frac{n_1}{2} \right) \left(\frac{(\bar{Y}_1 - \bar{Y}_2)^2}{\sigma^2} \right) = \frac{\text{SST}}{\sigma^2} \) has a \(\chi^2 \) dist w/ 1 df.

Note \(\text{SST} \) is a function of only \(\bar{Y}_1 \) & \(\bar{Y}_2 \), whereas \(\text{SSE} \) is a function of only the sample variances \(S_1^2 \) & \(S_2^2 \). Since \(\bar{Y} \) & \(S^2 \) are independent, then \(\text{SST} \) & \(\text{SSE} \) are independent.

Recall \(\frac{\chi^2}{n} = \frac{\chi^2/n_1}{\chi^2/n_2} \) mean squares

Thus \(\frac{\text{SST}}{\sigma^2 / 1} = \frac{\text{SSE}}{\sigma^2 / (2n_1-2)} \)

\(\frac{\text{SSE}}{\text{SSE} / (2n_1-2)} \)

\(\frac{\text{SST}}{\sigma^2 / 1} \)

Thus \(\frac{\text{MST}}{\text{MSE}} \) = \(\frac{\text{SST}}{\text{SSE} / (2n_1-2)} \)

Under null hypothesis \(H_0: M_1 = M_2 \), both \(\text{MST} \) & \(\text{MSE} \) estimate \(\sigma^2 \). However, when \(H_0 \) is false, \(\text{MST} \) estimates something larger than \(\sigma^2 \) & tends to be larger than \(\text{MSE} \).

Thus to test \(H_0: M_1 = M_2 \) versus \(H_a: M_1 \neq M_2 \) use \(F = \frac{\text{MST}}{\text{MSE}} \)

Rejection region: \(F > F_{2, \alpha} \), one-tailed \(F \) test.

Important note: This is equivalent to the two tailed \(T \) test of Ch. 10.

Why bother with all this? Because \(F \) test generalizes to allow for comparison of any number of treatments! (Not just 2!) Subject of Sec. 13.3.
13.3-13.4 Comparison of More than Two Means

Now we want to generalize to the following hypothesis testing:

$H_0: \mu_1 = \mu_2 = \ldots = \mu_k$

H_a: at least one of these equalities does not hold

Then Total $SS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y})^2$

This can be rewritten as $SS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} Y_{ij}^2 - CM$

where $CM = \frac{(\text{total of all observations})^2}{n} = \frac{1}{n} \left(\sum_{i=1}^{k} \sum_{j=1}^{n_i} Y_{ij} \right)^2 = n \bar{Y}^2$

Since we consider general case where sample sizes n_i may be unequal, we have:

$SST = \sum_{i=1}^{k} n_i \left(\frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij} - \bar{Y} \right)^2$

Sample mean of i^{th} pop = \bar{Y}_i

$SSE = \text{Total SS} - SST \; \& \; \text{easier to compute}$

Since the actual expression for SSE is $\sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij})^2$

Sample mean of i^{th} pop = \bar{Y}_i

Then again $\frac{SSE}{\sigma^2}$ is a χ^2 distribution, but this time

with $n_1 - 1 + n_2 - 1 + \ldots + n_k - 1 \; \text{df} = n_1 + n_2 + \ldots + n_k - k = n - k \; \text{df}$

As in Sec 13.2, can rewrite SST so that it is only a function of sample means of i^{th} population: $\frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij} = \bar{Y}_i$

This is because $\bar{Y} = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n_i} Y_{ij} = \frac{1}{n} \sum_{i=1}^{k} n_i \bar{Y}_i = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n_i} Y_{ij}$

Sample mean of i^{th} pop = \bar{Y}_i

This time, $\frac{SST}{\sigma^2}$ can be written in term of $k-1$ quantities $(\bar{Y}_i - \bar{Y})^2$

So $\frac{SST}{\sigma^2}$ has a χ^2 distributions with $k-1 \; \text{df}$

Thus $\frac{SST}{\sigma^2} / (k-1) = \frac{MST}{SSE/(n-k)} = \frac{F}{n-k}$

Again, under null hypothesis, both $\text{MST} \& \text{MSE}$ estimate σ^2. However, when H_0 is false, MST estimates something larger than σ^2 & tends to be larger than MSE

Thus to test $H_0 \; \text{vs} \; H_a$, use $F = \frac{\text{MST}}{\text{MSE}}$, and rejection region is $F > F_{k-1, n-k}$, one-tailed F test
Ex 23: Four groups of students were subjected to different teaching techniques and tested at the end of a specified period of time. Do the data present sufficient evidence to indicate a difference in mean achievement for the four teaching techniques?

(This is Ex 13.2 in textbook)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>75</td>
<td>59</td>
<td>94</td>
<td>454</td>
</tr>
<tr>
<td>87</td>
<td>69</td>
<td>78</td>
<td>89</td>
<td>549</td>
</tr>
<tr>
<td>73</td>
<td>83</td>
<td>67</td>
<td>80</td>
<td>425</td>
</tr>
<tr>
<td>79</td>
<td>81</td>
<td>62</td>
<td>88</td>
<td>351</td>
</tr>
<tr>
<td>81</td>
<td>72</td>
<td>83</td>
<td>76</td>
<td>6</td>
</tr>
<tr>
<td>69</td>
<td>79</td>
<td>76</td>
<td>90</td>
<td>67</td>
</tr>
</tbody>
</table>

We have \(H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 \)

\(H_1: \) one of these equalities does not hold

\[CM = \frac{1}{23} (454 + 549 + 425 + 351)^2 = 137,601.8 \]

\(\bar{\mu} = \frac{1}{23} (454 + 549 + 425 + 351) = 77.35 \)

Total SS = \(\sum_{i=1}^{4} \sum_{j=1}^{n_i} y_{ij}^2 - CM = (65)^2 + (87)^2 + \ldots + (88)^2 = 137,601.8 \)

SST = \(\sum_{i=1}^{4} n_i (\bar{\mu}_i - \bar{\mu})^2 = 6(75.67 - 77.35)^2 + 7(78.43 - 77.35)^2 + 6(70.83 - 77.35)^2 + 4(87.75 - 77.35)^2 = 712.6 \)

SSE = Total SS - SST = 1909.2 - 712.6 = 1196.6

So \(F = \frac{712.6 / (4-1)}{1196.6 / (23-4)} = \frac{237.5}{63.0} = 3.77 \)

For \(F \) at 19, p-value is between .025 and .05

So for any \(\alpha \geq \) p-value, we reject \(H_0 \) and accept \(H_1 \) that there is a difference in mean achievement.