Review for Midterm 1:

1.) Find the converse, contrapositive, and a useful denial of the statement: If \(x \in A \), then \(x \) is a boundary point of \(A \) or \(x \) is an interior pt of \(A \).

Converse: If \(x \) is a boundary point of \(A \) or \(x \) is an interior point of \(A \), then \(x \in A \).

Contrapositive: If \(x \) is not a boundary pt of \(A \) and \(x \) is not an interior pt of \(A \), then \(x \notin A \).

Useful denial: \(x \in A \) and \(x \) is not a boundary pt of \(A \) and \(x \) is not an interior pt of \(A \).

2.) T/F:

\(\neg (p \Rightarrow q) \equiv p \land \neg q \)

Truth table:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(p)</th>
<th>(q)</th>
<th>(p \Rightarrow q)</th>
<th>(\neg q)</th>
<th>(p \land \neg q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

\(\checkmark \) T/F:

b.) If \(a, b, c \in \mathbb{Z} \) and \(c \mid b \), then \(a \mid b \).

Time, let \(a, b, c \in \mathbb{Z} \). Assume \(ac \mid b \). Then \(b = ac \) for some \(c \in \mathbb{Z} \). Then \(b = c(ab) \). Since \(ac \in \mathbb{Z} \), then \(c \mid b \).

3. Translate & find negations (Universe = \(\mathbb{Z} \)).

a.) There exists a smallest integer \((\exists x)(\forall y)(x \leq y) \)

b.) For every integer, there exists some integer smaller than it. \((\forall x)(\exists y)(x > y) \)

c.) Every integer is smaller than some other integer. \((\forall x)(\exists y)(x < y) \)

Negations:

a.) \(\neg (\exists x)(\forall y)(x \leq y) \equiv (\forall x)(\exists y)(x > y) \) For every integer there exists some integer smaller than it.

b.) \(\neg (\forall x)(\exists y)(x > y) \equiv (\exists x)(\forall y)(x \leq y) \) There exists a smallest integer.

c.) \(\neg (\forall x)(\exists y)(x < y) \equiv (\exists x)(\forall y)(x \leq y) \) There exists a largest integer.

4.) Let \(x, y \in \mathbb{R} \). If \(x, y \) is irrational, then \(x \) is irrational or \(y \) is irrational.

Proof: Assume \(x \) is rational and \(y \) is irrational. Then \(x = \frac{a}{b} \) and \(y = \frac{c}{d} \) for some \(a, b, c, d \in \mathbb{Z} \) where \(b, d \neq 0 \). Then \(xy = \frac{ad}{bd} \). Since \(ac, bd \in \mathbb{Z} \), where \(bd \neq 0 \), then \(xy \) is irrational.

5.) Let \(x, y \in \mathbb{Z} \). If \(a - b \) is odd, then \(a + b \) is odd.

Proof: Assume \(a - b \) is odd. Then \(a + b = 2k + 1 \) and \(a + b = 2l \) for some \(k, l \in \mathbb{Z} \). Then \(2a = 2k + 2l + 1 = 2(k + l + 1) \). Since \(a \in \mathbb{Z} \), \(2a \) is even.

Since \(k + l \in \mathbb{Z} \), \(2(k + l + 1) \) is odd. Then \(2a \) is odd, a contradiction.

6.) Let \(m, n \in \mathbb{Z} \). Then \(m \) and \(n \) have different parity \(\iff m^2 - n^2 \) is odd.

Proof: \(\Rightarrow \) Assume \(m \) and \(n \) have different parity. Case 1: \(m \) is even, \(n \) is odd. Then \(m = 2k \) and \(n = 2l + 1 \) for some \(k, l \in \mathbb{Z} \). Then \(m^2 - n^2 = (2k)^2 - (2l + 1)^2 = 4k^2 - 4l^2 - 4l - 1 = 2(2k^2 - 2l^2 - 2l - 1) \). Since \(2k^2 - 2l^2 - 2l - 1 \in \mathbb{Z} \), then \(m^2 - n^2 \) is odd. Case 2: Since \(m^2 - n^2 = -(n^2 - m^2) \), then \(m^2 - n^2 \) is odd \(\iff n^2 - m^2 \) is odd.

\(\Leftarrow \) Assume \(m \) and \(n \) have the same parity. Case 1: \(m \) is even, \(n \) is even. Then \(m = 2k \) and \(n = 2l \) for some \(k, l \in \mathbb{Z} \). Then \(m^2 - n^2 = (2k)^2 - (2l)^2 = 4k^2 - 4l^2 = 2(2k^2 - 2l^2) \). Since \(2k^2 - 2l^2 \in \mathbb{Z} \), then \(m^2 - n^2 \) is even. Case 2: \(m \) is odd, \(n \) is odd. Then \(m = 2k + 1 \) and \(n = 2l + 1 \) for some \(k, l \in \mathbb{Z} \). Then \(m^2 - n^2 = (2k + 1)^2 - (2l + 1)^2 = 4k^2 - 4l^2 - 4k - 4l = 2(2k^2 - 2l^2 - 2k - 2l - 1) \). Since \(2k^2 - 2l^2 - 2k - 2l - 1 \in \mathbb{Z} \), then \(m^2 - n^2 \) is even.