Math 51 Review for Midterm 3

1. Prove for all \(n \in \mathbb{Z}^+ \), \(1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \cdots + n \cdot (n + 1) = \frac{n(n+1)(n+2)}{3} \).
 Proof: Let \(P(n) \) be the open sentence \(1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \cdots + n \cdot (n + 1) = \frac{n(n+1)(n+2)}{3} \).
 Base case: \(1 \cdot 2 = 1(2)(3)/3 \), so \(P(1) \) is true.
 Inductive step: Assume \(P(n) \) is true for some \(n \in \mathbb{Z}^+ \), so \(1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \cdots + n \cdot (n + 1) = \frac{n(n+1)(n+2)}{3} \) for some \(n \in \mathbb{Z}^+ \). Then \(1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \cdots + n \cdot (n + 1) + (n + 1) \cdot (n + 2) = \frac{n(n+1)(n+2)}{3} + (n + 1) \cdot (n + 2) = \frac{n(n+1)(n+2)+3(n+1)(n+2)}{3} = \frac{(n+1)(n+2)(n+3)}{3} \). Thus \(P(n + 1) \) is true.
 Thus for all \(n \in \mathbb{Z}^+ \), \(1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \cdots + n \cdot (n + 1) = \frac{n(n+1)(n+2)}{3} \).

2. Prove for all positive integers \(n > 1 \), \(3^n > 2^n + 1 \).
 Proof: Let \(P(n) \) be the open sentence \(3^n > 2^n + 1 \).
 Base case: \(3^2 > 2^2 + 1 \), so \(P(2) \) is true.
 Inductive step: Assume \(P(n) \) is true for some \(n \in \mathbb{Z}^+ \) where \(n > 1 \), so \(3^n > 2^n + 1 \) for some \(n > 1 \). Then \(3^{n+1} = 3^n \cdot 3 > (2^n + 1) \cdot 3 = 3 \cdot 2^n + 3 > 2 \cdot 2^n + 1 = 2^{n+1} + 1 \). Thus \(P(n + 1) \) is true.
 Thus for all positive integers \(n > 1 \), \(3^n > 2^n + 1 \).

3. Prove for all \(n \in \mathbb{N} \), 5 divides \(n^5 - n \).
 Proof: Let \(P(n) \) be the open sentence 5 divides \(n^5 - n \).
 Base case: 5|0, so \(P(0) \) is true.
 Inductive step: Assume \(P(n) \) is true for some \(n \in \mathbb{N} \), so 5\(k = n^5 - n \) for some \(k \in \mathbb{N} \).
 Then \((n + 1)^5 - (n + 1) = n^5 + 5n^4 + 10n^3 + 10n^2 + 5n + 1 - (n + 1) = n^5 + 5n^4 + 10n^3 + 10n^2 + 5n - n = 5k + 5n^4 + 10n^3 + 10n^2 + 5n = 5(k + n^4 + 2n^3 + 2n^2 + n) \), so 5 divides \((n + 1)^5 - (n + 1) \). Thus \(P(n + 1) \) is true.
 Thus for all \(n \in \mathbb{N} \), 5 divides \(n^5 - n \).

4. Let \(a_1 = 4, a_2 = 10 \), and \(a_{n+1} = 4a_n - 3a_{n-1} \) for all \(n \geq 2 \). Conjecture a general term for \(a_n \) and verify with PCI.
 Proof: We have \(a_1 = 4, a_2 = 10, a_3 = 28, etc \), so \(a_n = 3^n + 1 \) for all \(n \in \mathbb{Z}^+ \).
 Let \(P(n) \) be the open sentence \(a_n = 3^n + 1 \).
 Base case: \(a_1 = 3^1 + 1 = 4 \) and \(a_2 = 3^2 + 1 = 10 \), so \(P(1) \) and \(P(2) \) are true.
Inductive step: Assume for some positive integer \(m \geq 3 \), \(P(n) \) is true for \(n = 1, \ldots, m - 1 \), so \(a_n = 3^n + 1 \) for \(n = 1, \ldots, m - 1 \).

Then \(a_m = 4a_{m-1} - 3a_{m-2} = 4(3^{m-1} + 1) - 3(3^{m-2} + 1) = 4 \cdot 3^{m-1} + 4 - 3 \cdot 3^{m-2} - 3 = 4 \cdot 3^{m-1} - 3^{m-1} + 1 = 3 \cdot 3^{m-1} + 1 = 3^m + 1 \).

Thus \(P(m) \) is true.

Thus \(a_n = 3^n + 1 \) for all \(n \in \mathbb{Z}^+ \).

5. Let \(s \in \Sigma^* \), the set of strings over an alphabet \(\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \).
 a. Give a recursive definition of the function \(m(s) \), which equals the smallest digit in a nonempty string of decimal digits.
 Basis step: If \(x \in \Sigma \), then \(m(x) = x \).
 Inductive step: If \(t \in \Sigma^* \) and \(x \in \Sigma \), then \(m(tx) = \min(m(t), x) \).
 b. Use structural induction to prove that \(m(st) = \min(m(s), m(t)) \).
 Let \(P(t) \) be the open sentence \(m(st) = \min(m(s), m(t)) \) whenever \(s \in \Sigma^* \).
 Basis step: If \(x \in \Sigma \), \(m(sx) = \min(m(s), x) = \min(m(s), m(x)) \), thus \(P(x) \) is true.
 Inductive step: Assume \(P(t) \) is true. Then \(m(stx) = m((st)x) = \min(m(st), x) = \min(\min(m(s), m(t)), x) = \min(m(s), \min(m(t), x)) = \min(m(s), m(tx)) \) whenever \(s \in \Sigma^* \). Thus \(P(tx) \) is true.
 Thus \(m(st) = \min(m(s), m(t)) \).