Math 51 Midterm 3 Solutions

1. Prove for all \(n \in \mathbb{Z}^+ \), \(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \cdots + \frac{1}{n(n+1)} = \frac{n}{n+1} \).

 Proof: Let \(P(n) \) be the open sentence \(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \cdots + \frac{1}{n(n+1)} = \frac{n}{n+1} \).

 Base case: \(\frac{1}{1 \cdot 2} = \frac{1}{1+1} \), so \(P(1) \) is true.

 Inductive step: Assume \(P(n) \) is true for some \(n \in \mathbb{Z}^+ \), so \(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \cdots + \frac{1}{n(n+1)} = \frac{n}{n+1} \).

 \[\begin{align*}
 & \quad \frac{1}{(n+1)(n+2)} + \frac{1}{(n+1)(n+2)} = \frac{n(n+2)+1}{(n+1)(n+2)} = \frac{n^2+2n+1}{(n+1)(n+2)} = \\
 & \quad \frac{(n+1)^2}{(n+1)(n+2)} = \frac{n+1}{n+2}. \text{ Thus } P(n+1) \text{ is true.}
 \end{align*} \]

 Thus for all \(n \in \mathbb{Z}^+ \), \(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \cdots + \frac{1}{n(n+1)} = \frac{n}{n+1} \).

2. Prove for all positive integers \(n \geq 4 \), \(n! > 2^n \).

 Proof: Let \(P(n) \) be the open sentence \(n! > 2^n \).

 Base case: \(4! > 2^4 \), so \(P(4) \) is true.

 Inductive step: Assume \(P(n) \) is true for some \(n \in \mathbb{Z}^+ \) where \(n \geq 4 \), so \(n! > 2^n \) for some \(n \geq 4 \). Then \((n+1)! = (n+1)n! > (n+1)2^n \geq 5 \cdot 2^n > 2 \cdot 2^n = 2^{n+1} \). Thus \(P(n+1) \) is true.

 Thus for all positive integers \(n \geq 4 \), \(n! > 2^n \).

3. Prove for all \(n \in \mathbb{N} \) (i.e. nonnegative integers), 6 divides \(n^3 - n \).

 Proof: Let \(P(n) \) be the open sentence 6 divides \(n^3 - n \).

 Base case: \(6 | 0 \), so \(P(0) \) is true.

 Inductive step: Assume \(P(n) \) is true for some \(n \in \mathbb{N} \), so \(6k = n^3 - n \) for some \(k \in \mathbb{N} \).

 \[\begin{align*}
 & (n+1)^3 - (n+1) = n^3 + 3n^2 + 3n + 1 - (n+1) = n^3 + 3n^2 + 2n = n^3 + 3n^2 + 3n - n = 6k + 3n^2 + 3n = 6k + 3n(n+1). \text{ Since } n(n+1) \text{ must be even times odd, it can be replaced by } 2l(2l+1). \text{ Thus we have } 6k + 3(2l)(2l+1) = 6(k + l(l+1)), \text{ so 6 divides } (n+1)^3 - (n+1). \text{ Thus } P(n+1) \text{ is true.}
 \end{align*} \]

 Thus for all \(n \in \mathbb{N} \), 6 divides \(n^3 - n \).
4. Let \(a_1 = 2, a_2 = 8 \), and \(a_{n+1} = 4a_n - 3a_{n-1} \) for all \(n \geq 2 \). Conjecture a general term for \(a_n \) and verify with PCI.

 Proof: We have \(a_1 = 2, a_2 = 8, a_3 = 26, etc \), so \(a_n = 3^n - 1 \) for all \(n \in \mathbb{Z}^+ \).

 Let \(P(n) \) be the open sentence \(a_n = 3^n - 1 \).

 Base case: \(a_1 = 3^1 - 1 = 2 \) and \(a_2 = 3^2 - 1 = 8 \), so \(P(1) \) and \(P(2) \) are true.

 Inductive step: Assume for some positive integer \(m \geq 3 \), \(P(n) \) is true for \(n = 1, ..., m - 1 \), so \(a_n = 3^n + 1 \) for \(n = 1, ..., m - 1 \).

 Then \(a_m = 4a_{m-1} - 3a_{m-2} = 4(3^{m-1} - 1) - 3(3^{m-2} - 1) = 4 \cdot 3^{m-1} - 4 - 3 \cdot 3^{m-2} + 3 = 4 \cdot 3^{m-1} - 3^{m-1} - 1 = 3 \cdot 3^{m-1} - 1 = 3^m - 1 \).

 Thus \(P(m) \) is true.

 Thus \(a_n = 3^n - 1 \) for all \(n \in \mathbb{Z}^+ \).

5. Let \(w \in \Sigma^* \), the set of strings over an alphabet \(\Sigma \).

 a. Give a recursive definition of \(w^i \), where \(w \) is a string and \(i \) is a nonnegative integer.

 Basis step: \(w^0 = \lambda \)

 Inductive step: \(w^{n+1} = w w^n \)

 b. Use structural induction to show that \(l\left(w^i\right) = i \cdot l(w) \), where \(w \) is a string and \(i \) is a nonnegative integer. Here \(l(w) \) is the length of the string \(w \).

 Let \(P(i) \) be \(l\left(w^i\right) = i \cdot l(w) \).

 Basis step: \(l(w^0) = 0 = 0 \cdot l(w) \), so \(P(0) \) is true.

 Inductive step: Assume \(P(i) \) is true. Then \(l\left(w^{i+1}\right) = l(w w^i) = l(w) + l\left(w^i\right) = l(w) + i \cdot l(w) = (i + 1)l(w) \). Thus \(P(i + 1) \) is true.