Math 51 Sample Final Solutions

1. Prove: Let \(x \in \mathbb{Z} \). Then \(x^3 \) is even iff \(x \) is even.

 Proof: Let \(x \in \mathbb{Z} \). “\(\Rightarrow \)” Suppose \(x \) is even. Then \(x = 2k \) for some \(k \in \mathbb{Z} \). Then \(x^3 = (2k)^3 = 8k^3 = 2(4k^3) \). Since \(4k^3 \in \mathbb{Z} \), then \(x^3 \) is even. “\(\Leftarrow \)” Suppose \(x^3 \) is even. Then \(x = 2k + 1 \) for some \(k \in \mathbb{Z} \). Then \(x^3 = (2k + 1)^3 = 8k^3 + 12k^2 + 6k + 1 = 2(4k^3 + 6k^2 + 3k) + 1 \). Since \(4k^3 + 6k^2 + 3k \in \mathbb{Z} \), then \(x^3 \) is odd.

2. Prove: Let \(a, b, c \in \mathbb{Z} \). If \(a \) divides \(b \) and \(a \) does not divide \(c \), then \(a \) does not divide \(b + c \).

 Proof: Let \(a, b, c \in \mathbb{Z} \). Suppose \(a \) divides \(b \) and \(a \) does not divide \(c \) and (for a contradiction) that \(a \) divides \(b + c \). Then \(b + c = ak \) and \(b = al \) for some \(k, l \in \mathbb{Z} \).

 Then \(b + c = al + c = ak \), so \(c = ak - al = a(k - l) \). Since \(k - l \in \mathbb{Z} \), then \(a \) divides \(c \), a contradiction. Thus \(a \) does not divide \(b + c \).

3. Write in symbolic form, where the universe is all quadrilaterals:

 a. All squares are rectangles.
 \[(\forall x)(x \text{ is a square } \Rightarrow x \text{ is a rectangle}) \]

 b. There exists a rectangle that is not a square.
 \[(\exists x)(x \text{ is a rectangle } \land x \text{ is not a square}) \]

 c. Write a useful denial of part (a) and translate back into English.
 \[(\exists x)(x \text{ is a square } \land x \text{ is not a rectangle}) \]
 There exists a square that is not a rectangle.

 d. Write a useful denial of part (b) and translate back into English.
 \[(\forall x)(x \text{ is a rectangle } \Rightarrow x \text{ is a square}) \]
 All rectangles are squares.

4. Let \(A, B, C \) and \(D \) be sets. Prove if \(C \subseteq A \), \(D \subseteq B \), and \(A \) and \(B \) are disjoint, then \(C \) and \(D \) are disjoint.

 Proof: Let \(A, B, C \) and \(D \) be sets. Suppose \(C \subseteq A \), \(D \subseteq B \), and \(A \) and \(B \) are disjoint. Assume, for a contradiction, that \(C \) and \(D \) are not disjoint. Then there is an element \(x \in C \cap D \). This implies \(x \in C \) and \(x \in D \). Since \(C \subseteq A \), then \(x \in A \) and since \(D \subseteq B \), then \(x \in B \). Thus \(x \in A \cap B \). But \(A \) and \(B \) are disjoint, a contradiction. Thus \(C \) and \(D \) are disjoint.

5. For the function \(f: (1, \infty) \rightarrow (0, \infty) \) given by \(f(x) = \frac{1}{x-1} \),

 a. Is \(f \) 1-1? Either prove it is 1-1 or explain why it is not.
 \[1-1: \text{Suppose } \frac{1}{x-1} = \frac{1}{y-1}. \] Then \(x - 1 = y - 1 \), so \(x = y \). Thus \(f \) is 1-1.
b. Is \(f \) onto? Either prove it is onto or explain why it is not.

Onto: Let \(b \in (0, \infty) \). Let \(a = \frac{b+1}{b} \). Since \(b + 1 > b \), then \(a > 1 \), so \(a \in (1, \infty) \).

Then \(f \left(\frac{b+1}{b} \right) = \frac{1}{\frac{b+1}{b}-1} = \frac{1}{b} = b \). Thus \(f \) is onto.

6. Prove that the set \(\{ x \in \mathbb{Z} : x \leq -5 \} \) is denumerable.

Proof: Let \(f: \mathbb{Z}^+ \to \{ x \in \mathbb{Z} : x \leq -5 \} \) be given by \(f(x) = -x - 4 \).

1-1: Suppose \(f(x) = f(y) \). Then \(-x - 4 = -y - 4\), so \(-x = -y\), thus \(x = y \).

Onto: Suppose \(b \in \{ x \in \mathbb{Z} : x \leq -5 \} \). Let \(a = -b - 4 \). Since \(b \in \{ x \in \mathbb{Z} : x \leq -5 \} \), then \(b < -4 \), and thus \(-b > 4\), so \(-b - 4 > 0\). Thus \(a > 0 \) implies \(a \in \mathbb{Z}^+ \). Then \(f(a) = f(-b - 4) = -(-b - 4) - 4 = b + 4 = b \).

Thus \(f \) is both 1-1 and onto, so \(\{ x \in \mathbb{Z} : x \leq -5 \} \) is equivalent to \(\mathbb{Z}^+ \) and is thus denumerable.

7. Prove for all \(n \in \mathbb{Z}^+ \), \(\frac{1}{2!} + \frac{2}{3!} + \cdots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!} \).

Proof: Let \(P(n) \) be the open sentence \(\frac{1}{2!} + \frac{2}{3!} + \cdots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!} \).

Base case: \(\frac{1}{2!} = 1 - \frac{1}{1!} \), so \(P(1) \) is true.

Inductive step: Assume \(P(n) \) is true for some \(n \in \mathbb{Z}^+ \), so \(\frac{1}{2!} + \frac{2}{3!} + \cdots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!} \).

Then \(\frac{1}{2!} + \frac{2}{3!} + \cdots + \frac{n+1}{(n+2)!} = 1 - \frac{1}{(n+1)!} + \frac{n+1}{(n+2)!} = 1 - \frac{n+2}{(n+2)!} + \frac{n+1}{(n+2)!} = 1 - \frac{1}{(n+2)!} \). Thus \(P(n+1) \) is true.

Thus for all \(n \in \mathbb{Z}^+ \), \(\frac{1}{2!} + \frac{2}{3!} + \cdots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!} \).

8. Let \(R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x^2 + y^2 \text{ is even} \} \).

a. Determine if it is reflexive, if it is symmetric, and if it is transitive.

Reflexive: \((x, x) \in R \) since \(x^2 + x^2 = 2x^2 \) is even because \(x^2 \in \mathbb{Z} \).

Symmetric: Assume \((x, y) \in R \). Then \(x^2 + y^2 \) is even, so since \(x^2 + y^2 = y^2 + x^2 \), then \(y^2 + x^2 \) is even. Thus \((y, x) \in R \).

Transitive: Assume \((x, y) \in R \) and \((y, z) \in R \). So \(x^2 + y^2 \) is even and \(y^2 + z^2 \) is even. Then \(x^2 + y^2 = 2k \) and \(y^2 + z^2 = 2l \) for some \(k, l \in \mathbb{Z} \). Then \(x^2 + (2l - z^2) = 2k \), so \(x^2 - z^2 = -2l + 2k \). Since \(2z^2 \) is even, then \(x^2 - z^2 + 2z^2 = -2l + 2k + 2z^2 \), so \(x^2 + z^2 = 2(-l + k + z^2) \). Thus \(x^2 + z^2 \) is even.

b. Is it an equivalence relation?

Yes, because it is reflexive, symmetric, and transitive.
9. Let $A = \{1,2,3\}$. List the ordered pairs of a relation on A with the following properties:
 a. Not reflexive, not symmetric, and transitive.
 $$\{(1,2)\}$$
 b. Reflexive, symmetric, and not transitive.
 $$\{(1,1), (2,2), (3,3), (1,2), (2,1), (2,3), (3,2)\}$$

10. For each of the following, determine if it is true or false. Justify your answers.
 a. Let $a, b, c \in \mathbb{Z}$. If a divides b and c divides b, then ac divides b.
 False: Counterexample: $4|12$ and $6|12$, but $24 \nmid 12$.
 b. Let $A = \{\emptyset, 1, \{2\}\}$. Then $\emptyset, \{2\} \subseteq \mathcal{P}(A)$.
 False: $\{2\}$ is not an element of $\mathcal{P}(A)$. (It is an element of A).
 c. I pick 4 balls without replacement out of a bag with 4 green and 5 red balls, all distinguishable. There are $\binom{4}{2} \cdot \binom{5}{2}$ ways to pick 2 green and 2 red balls.
 True: using multiplication principle and choosing 2 green and 2 red balls.
 d. The recurrence relation $a_n = n^2a_{n-1} - 3a_{n-4} + 3$ is a linear homogeneous recurrence relation of degree 4 with constant coefficients.
 False, it is linear non-homogenous of degree 4 with non-constant coefficients.
 e. The relation $R = \{(x,y) \in \mathbb{R} \times \mathbb{R} : x = y^2 + 1\}$ is a function.
 False, $(2,1) \in R$ and $(2,-1) \in R$, so condition (ii) is not satisfied.
 f. The integers 3 and 7 are in the same equivalence class mod 6.
 False, $3 \in [3]$, but $7 \in [1]$.