Math 51 Take-Home Final, Spring 2017, Instructor: Nicolette Meshkat

Instructions: Show all work. This test is open book, open notes, and you are allowed to use a calculator. You are not allowed to work with others and you are not allowed to use the internet or other external resources.

1. Prove that $\sqrt{3}$ is irrational.

2. Prove: Let $a, b \in \mathbb{Z}$. If a and b are odd, then 4 does not divide $a^2 + b^2$.

3. Write in symbolic form, where the universe is all quadrilaterals:
 a. No squares are rectangles.
 b. Not all rectangles are squares.
 c. Write a useful denial of part (a) and translate back into English.
 d. Write a useful denial of part (b) and translate back into English.

4. Let A, B, C and D be sets. Prove if $A \cup B \subseteq C \cup D$, $A \cap B = \emptyset$, and $C \subseteq A$, then $B \subseteq D$.

5. For the function $f: (1, \infty) \to (-\infty, -1)$ given by $f(x) = \frac{-x}{x-1}$,
 a. Is f 1-1? Either prove it is 1-1 or explain why it is not.
 b. Is f onto? Either prove it is onto or explain why it is not.

6. Prove that the set of non-negative integer powers of 2 is denumerable.

7. Prove for all $n \in \mathbb{Z}^+$,
 $$\sum_{i=1}^{n} \frac{1}{(2i-1)(2i+1)} = \frac{n}{2n+1}$$

8. Let $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x + y \text{ is even}\}$.
 a. Determine if it is reflexive, if it is symmetric, and if it is transitive.
 b. Is it an equivalence relation?
9. Let $A = \{1, 2, 3\}$. List the ordered pairs of a relation on A with the following properties:
 a. Reflexive, not symmetric, and not transitive.
 b. Not reflexive, symmetric, and not transitive.

10. For each of the following, determine if it is true or false. Justify your answers.
 a. Let $a, b, c \in \mathbb{Z}$. If a divides bc, then a divides b or a divides c.
 b. Let $A = \{\emptyset, 1, \{2\}\}$. Then $\{\emptyset, \{\emptyset\}\} \subseteq \mathcal{P}(A)$.
 c. A committee has 10 members (6 women and 4 men). Alice is one of the 6 women. Three distinct offices must be filled (chairperson, secretary, treasurer). If Alice must be one of the officers, there are $\text{P}(9,2)$ ways the offices can be filled.
 d. The solution to the recurrence relation $a_n = \frac{1}{4}a_{n-2}$ for $n \geq 2$ with $a_0 = 1$ and $a_1 = 0$ is $a_n = \left(\frac{1}{2}\right)^{n+1} - \left(-\frac{1}{2}\right)^{n+1}$ for $n \in \mathbb{N}$.
 e. The relation $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x = \sqrt{y}\}$ is a function from \mathbb{R} to \mathbb{R}.
 f. Let $a, b \in \mathbb{Z}$ and $k \in \mathbb{Z}^+$. If $a \equiv b \mod k$, then $b \equiv a \mod k$.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible points</th>
<th>Points earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>#6</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>#7</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>#8</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>#9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Total: 200