Math 51 Midterm 1 Solutions, Spring 2018

1. Given the statement: “If \(xy \) and \(x + y \) are even, then both \(x \) and \(y \) are even”.
 a. Write the converse.
 If both \(x \) and \(y \) are even, then \(xy \) and \(x + y \) are even.
 b. Write the contrapositive.
 If \(x \) is odd or \(y \) is odd, then \(xy \) is odd or \(x + y \) is odd.
 c. Write a useful denial.
 \(xy \) and \(x + y \) are even and either \(x \) is odd or \(y \) is odd.

2. For each of the following, determine if it is true or false. Justify your answers.
 a. If \(P \) and \(Q \) are statements, then \(\sim(P \lor Q) \) is logically equivalent to \(\sim P \lor \sim Q \).

 \[
 \begin{array}{|c|c|c|c|c|c|c|}
 \hline
 P & Q & P \lor Q & \sim(P \lor Q) & \sim P & \sim Q & \sim P \lor \sim Q \\
 \hline
 T & T & T & F & F & F & F \\
 T & F & T & F & T & T & F \\
 F & T & T & F & F & T & T \\
 F & F & F & T & T & T & T \\
 \hline
 \end{array}

 False: The columns corresponding to \(\sim(P \lor Q) \) and \(\sim P \lor \sim Q \) are not equal.

 b. Let \(a, b \in \mathbb{Z} \). If \(a \) divides \(b \) and \(b \) divides \(a \), then \(a = b \).

 False: Counterexample: \(a = 1, b = -1 \) (or any pair of integers where \(a = -b \)).

3. Write in symbolic form, where the universe is all quadrilaterals:
 a. Some rectangles are not squares.
 \((\exists x)(x \text{ is a rectangle} \land x \text{ is not a square})\)
 b. No rectangles are squares.
 \((\forall x)(x \text{ is a rectangle} \implies x \text{ is not a square})\)
 c. Write the negation of part (a) and write the symbolic form.
 \((\forall x)(x \text{ is a rectangle} \implies x \text{ is a square})\)
 All rectangles are squares.
 d. Write the negation of part (b) and write the symbolic form.
 \((\exists x)(x \text{ is a rectangle} \land x \text{ is a square})\)
 Some rectangles are squares.

For problem 4-6, prove from the definitions (do not quote results from homework).

4. Let \(x, y \in \mathbb{Z} \). Prove that \(x - y \) is even if and only if \(x \) and \(y \) are of the same parity.
 Proof: Let \(x, y \in \mathbb{Z} \). \(\Rightarrow \): Assume \(x \) and \(y \) have opposite parity. Case 1: Assume \(x \) is even and \(y \) is odd. Then \(x = 2k \) and \(y = 2l + 1 \) for some \(k, l \in \mathbb{Z} \). Then \(x - y = 2k - (2l + 1) = 2k - 2l - 1 = 2(k - l - 1) + 1 \). Since \(k - l - 1 \in \mathbb{Z} \), then \(x - y \) is odd. Case 2: Assume \(x \) is odd and \(y \) is even. Since \(x - y = -y + x \) and since the negative of an odd integer is odd, then \(x - y \) is odd. \(\Leftarrow \): Assume \(x \) and \(y \) are of the same parity. Case 1: Assume \(x \) is even and \(y \) is even. Then \(x = 2k \) and \(y = 2l \) for some \(k, l \in \mathbb{Z} \). Then \(x - y = 2k - 2l = 2(k - l) \). Since \(k -
If \(l \in \mathbb{Z} \), then \(x - y \) is even. Case 2: Assume \(x \) is odd and \(y \) is odd. Then \(x = 2k + 1 \) and \(y = 2l + 1 \) for some \(k, l \in \mathbb{Z} \). Then \(x - y = 2k + 1 - (2l + 1) = 2(k - l) \). Since \(k - l \in \mathbb{Z} \), then \(x - y \) is even.

5. Prove if \(x \) and \(y \) are distinct, positive, real numbers, then \(\frac{x}{y} + \frac{y}{x} > 2 \).

Proof: Assume \(x \) and \(y \) are distinct, positive, real numbers and assume, for a contradiction, that \(\frac{x}{y} + \frac{y}{x} \leq 2 \). Multiplying both sides by \(xy \), we obtain \(x^2 + y^2 \leq 2xy \), which implies \(x^2 - 2xy + y^2 \leq 0 \), which implies \((x - y)^2 \leq 0 \). But \(x \) and \(y \) are distinct, so \((x - y)^2 < 0 \). However, this contradicts the fact that \(z^2 \geq 0 \) for every real number \(z \).

6. a. Let \(n \) be an integer. Prove if 3 divides \(n^2 \), then 3 divides \(n \). (Hint: you may use the fact that every integer greater than 1 either is prime itself or is the product of prime numbers.)

Proof: Let \(n \) be an integer. Assume 3 divides \(n^2 \). Then \(n^2 = 3k \) for some \(k \in \mathbb{Z} \). Since every integer greater than 1 either is prime itself or the product of prime numbers, we have that \(n = p_1 p_2 ... p_m \) is the prime factorization of \(n \) for some \(m \geq 1 \). Then \(n^2 = p_1^2 p_2^2 ... p_m^2 = 3k \). Since 3 is prime, it is not a product of primes, and thus some \(p_i = 3 \) for \(i = 1, ..., m \). Thus 3 divides \(n \).

b. Prove that \(\sqrt{3} \) is irrational. (Hint: you may use part (a)).

Proof: Assume \(\sqrt{3} \) is rational. Then \(\sqrt{3} = \frac{a}{b} \) for some \(a, b \in \mathbb{Z} \) with \(b \neq 0 \) and \(a \) and \(b \) have no common factors. Then \(a^2 = 3b^2 \), which means 3 divides \(a^2 \), which means 3 divides \(a \). Thus \(a = 3k \) for some \(k \in \mathbb{Z} \). Then \((3k)^2 = 3b^2 = 9k^2 \), which means \(b^2 = 3k^2 \). So 3 divides \(b^2 \), which means 3 divides \(b \). But this means 3 divides both \(a \) and \(b \), which means \(a \) and \(b \) have a common factor, a contradiction.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible points</th>
<th>Points earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>#6</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>