8.2 Solving Recurrence Relations

We will now learn how to solve a specific form of recurrence relation:

Definition: A linear homogeneous recurrence relation of degree \(k \) with constant coefficients is a recurrence relation of the form:

\[a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k} \]

where \(c_1, \ldots, c_k \) are real numbers and \(c_k \neq 0 \) (but \(c_1, \ldots, c_{k-1} \) can be 0 or non-zero).

Notes: Important descriptors in this def:

- **Linear:** the right-hand side is a sum of multiples of the previous terms of the sequence, i.e., \(a_n = \sum_{i=1}^{k} c_i a_{n-i} \), \(a_i \neq a_n \) only appears to the first power.
- **Homogeneous:** no terms occur that are not multiples of the \(a_i \) terms.
- **Degree \(k \):** \(a_n \) is expressed in terms of the previous \(k \) terms of the sequence, i.e., the difference between the smallest and largest index is \(k \).
- **Constant Coefficients:** coefficients do not depend on \(n \).

Ex1: Describe the following recurrence relations:

a.) \(a_n = 2a_{n-1} + 3 \) linear non-homogeneous rec. reln. of degree 1 w/ const. coeffs.

b.) \(a_n = na_{n-1} + a_{n-3} \) linear homogeneous rec. reln. of degree 3 w/ non-const. coeffs.

c.) \(a_n = (a_{n-2})^2 + a_{n-4} \) nonlinear homogeneous rec. reln. of degree 4 w/ const. coeffs.

How to solve? (Note: very similar to solving linear homogeneous differential eqns w/ const. coeffs)

Recall geometric progression: \(a, ar, ar^2, \ldots, ar^n, \ldots \)

where initial term is \(a \) and common ratio is \(r \).

Ex: \(2, -\frac{2}{3}, \frac{2}{9}, -\frac{2}{27}, \ldots \) where \(a_n = 2 \cdot (-\frac{1}{3})^n \)

What if we're given recurrence relation & initial condition? \(a_n = -\frac{1}{3}a_{n-1}, a_0 = 2 \)

General method: Plug in \(r^n \) into rec. reln. & solve for \(r \). Soln is \(a_n = cr^n \).

Ex: \(r^n = -\frac{1}{3} r^{n-1} \Rightarrow r^n + \frac{1}{3} r^{n-1} = 0 \Rightarrow r^{-1} (r + \frac{1}{3}) = 0 \Rightarrow r = -\frac{1}{3} \Rightarrow a_n = 2 \cdot (-\frac{1}{3})^n \)

To find \(c \), plug in initial condition: \(2 = c (-\frac{1}{3}) \Rightarrow c = 2 \Rightarrow a_n = 2 \cdot (-\frac{1}{3})^n \)

For higher order recurrence relations: same method, but now get multiple solns for \(r \)

Ex2: Second order (i.e. degree 2) rec. relns: get quadratic eqn in \(r \).

Case 1: 2 distinct real solns: \(r_1 \& r_2 \)

Soln: \(a_n = a_1 r_1^n + a_2 r_2^n \) where \(a_1 \& a_2 \) are constants

Case 2: 1 repeated real soln: \(r \)

Soln: \(a_n = a_1 r^n + a_2 n r^n \) where \(a_1 \& a_2 \) are constants

Ex2: \(a_n = 5a_{n-1} - 6a_{n-2} \)

\(r^n = 5r^{n-1} - 6r^{n-2} \Rightarrow r^n - 5r^{n-1} + 6r^{n-2} = 0 \Rightarrow r^{n-2} (r^2 - 5r + 6) = 0 \)

\(r^{n-2} (r-3) (r-2) = 0 \Rightarrow r = 3 \text{ or } r = 2 \Rightarrow a_n = a_1 3^n + a_2 2^n \)
How to determine a_1 & a_2? Need 2 initial conditions: $a_0 = 0$ & $a_1 = 4$
\[\begin{align*}
0 &= a_1 + a_2 \\
0 &= -2a_1 - 2a_2 \\
4 &= 3a_1 + 2a_2 \\
4 &= 3a_1 + 2a_2 \\
4 &= a
\end{align*} \]

Ex 3: $an = 2an_{-1} - an_{-2}$
\[r^n = 2r^{n-1} - r^{n-2} \rightarrow r^n - 2r^{n-1} + r^{n-2} = 0 \rightarrow r^{n-2}(r^2 - 2r + 1) = 0 \rightarrow (r-1)^2 = 0 \]
\[r = 1, 1 \rightarrow an = a_1(1)^n + a_2(1)^n \cdot (1)^n = a_n = a_1 + a_2 n \]

Generalizes to third order and above:

Ex: Third order (i.e. degree 3) rec relns: get cubic eqn in r.
 Case 1: 3 distinct real solns: r_1, r_2, r_3
 Soln: $an = \alpha_1 r_1^n + \alpha_2 r_2^n + \alpha_3 r_3^n$ where $\alpha_1, \alpha_2, \alpha_3$ are constants
 Case 2: 1 root of multiplicity 2 & one other root: r_1, r_1, r_2
 Soln: $an = \alpha_1 r_1^n + \alpha_2 n \cdot r_1^n + \alpha_3 r_2^n$
 Case 3: 1 root of multiplicity 3 : r
 Soln: $an = \alpha_1 r_1^n + \alpha_2 n \cdot r^n + \alpha_3 n^2 \cdot r^n$

Ex 4: $an = 4an_{-1} - an_{-2} - 6an_{-3}$
\[r^n - 4r^{n-1} + r^{n-2} + 6r^{n-3} = 0 \rightarrow r^n - 3(r^3 - 4r^2 + r + 6) = 0 \]
Guess roots: ±1, ±2, ±3, ±6

Guess $r = 1$:
\[\begin{array}{cccc}
1 & -4 & 1 & 6 \\
1 & -3 & -2
\end{array} \]

Guess $r = -1$:
\[\begin{array}{cccc}
1 & 4 & 1 & 6 \\
1 & -5 & -6
\end{array} \]

So $(r+1)(r-5)(r+6) = 0 \rightarrow (r+1)(r-3)(r+2) = 0 \rightarrow r = -1, 3, 2$
\[a_n = \alpha_1 (-1)^n + \alpha_2 (3)^n + \alpha_3 (2)^n \]

Need 3 initial conditions to get $\alpha_1, \alpha_2, \alpha_3$: $a_0 = 2, a_1 = -1, a_2 = 7$
\[\begin{align*}
2 &= \alpha_1 + \alpha_2 + \alpha_3 \\
-1 &= -\alpha_1 + 3\alpha_2 + 2\alpha_3 \\
7 &= \alpha_1 + 9\alpha_2 + 4\alpha_3
\end{align*} \]
Solv: $\alpha_n = 2(-1)^n + 3^n - 2^n$

Ex 5: $an = 3an_{-1} - 3an_{-2} + an_{-3}$ with $a_0 = 1, a_1 = 2, a_2 = 5$
\[r^n - 3(r^3 - 3r^2 + 3r - 1) = 0 \rightarrow (r-1)^3 = 0 \rightarrow r = 1, 1, 1 \rightarrow an = a_1 + a_2 n + a_3 n^2 \]
\[\begin{align*}
1 &= a_1 + 0 + 0 \rightarrow a_1 = 1 \\
2 &= a_1 + a_2 + a_3 \rightarrow 2 = 1 + a_2 + a_3 \\
5 &= a_1 + 2a_2 + 4a_3 \rightarrow 5 = 1 + 2a_2 + 4a_3
\end{align*} \]
Solv: $an = 1 + n^2$
9.1 & 9.5 Relations / Equivalence Relations

Recall Defn: Let A and B be sets. The \textbf{Cartesian product} of A and B is the set $A \times B = \{ (a, b) : a \in A \text{ and } b \in B \}$

Here, (a, b) is an ordered pair, not an open interval from a to b.

Defn: Let A and B be sets. R is a relation from A to B iff R is a subset of $A \times B$.
If $(a, b) \in R$, we write $a R b$ and say "a is related to b".
If $(a, b) \notin R$, we write $a \not R b$.

Ex 1: $A = \{1, 2, 3\}$, $B = \{-1, 0, 1, 2\}$
$R = \{(1, -1), (1, 0), (3, 1)\}$ is a relation from A to B. So $1R-1$, but $1 \not R 1$.

3 other ways to describe R:

Table: \[
\begin{array}{c|c}
1 & -1 \\
\hline
1 & 0 \\
3 & 1 \\
\end{array}
\]

Arrow Diagram:

Graph of R:

Domain & range definitions are similar to functions, but a bit different than functions:

Defn: The \textbf{domain} of the relation R from A to B is the set
$\text{Dom}(R) = \{ x \in A : \text{ there exists } y \in B \text{ such that } x R y \}$ = first coordinates of ordered pairs

The \textbf{range} of the relation R from A to B is the set
$\text{Rng}(R) = \{ y \in B : \text{ there exists } x \in A \text{ such that } x R y \}$ = second coordinates of ordered pairs

Ex 1 Cont'd: For R in Ex 1: $\text{Dom}(R) = \{1, 3\}$ $\text{Rng}(R) = \{-1, 0, 1\}$

Note that functions are a special type of relations:

Defn: A \textbf{function} from A to B is a relation f from A to B such that
(i) the domain of f is A,
(ii) if $(x, y) \in f$ and $(x, z) \in f$, then $y = z$.

Note: Condition (i.) says every element of A is a first coordinate in f.
Condition (ii.) says each first coordinate appears in just one ordered pair in f.

No requirements for second coordinates! Some elements of B may not appear as second coordinates (i.e. not onto), and some elements of B may be used as second coordinates multiple times (i.e. not 1-1).

Because of this difference between functions & relations, note that inverse is defined differently for relations & always exists!

Defn: If R is a relation from A to B, then the \textbf{inverse of R} is the relation
$R^{-1} = \{ (y, x) : (x, y) \in R \}$

Ex 1 Cont'd: $R^{-1} = \{(-1, 1), (0, 1), (1, 3)\}$
Ex 2: Let \(R = \{ (x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 \leq 9 \} \) is a relation from \(R \) to \(R \) (i.e. a relation on \(R \)).

Graph:

\[
\begin{array}{c}
\bullet (3, 3) \\
\bullet (0, 0) \\
\bullet (-3, 3) \\
\end{array}
\]

\(\text{Dom}(R) = [-3, 3] \quad \text{Range}(R) = [-3, 3] \)

\(R^{-1} = \{ (x, y) \in \mathbb{R} \times \mathbb{R} : y^2 + x^2 \leq 9 \} \) Notice \(R = R^{-1} \) here.

Now look at special properties of relations:

Define: Let \(A \) be a set and \(R \) be a relation on \(A \) (from \(A \) to \(A \)).

- \(R \) is reflexive on \(A \) iff for all \(x \in A \), \(xRx \)
- \(R \) is symmetric on \(A \) iff for all \(x \) and \(y \in A \), if \(xRy \), then \(yRx \)
- \(R \) is transitive on \(A \) iff for all \(x, y, \) and \(z \in A \), if \(xRy \) and \(yRz \), then \(xRz \)

Ex 3: Check following relations on \(A = \{1, 2, 3\} \) for reflexivity, symmetry, transitivity.

a.) \(R_1 = \{ (1, 1), (1, 2), (2, 1) \} \)

Picture:

\[
\begin{array}{c}
1 \quad 2 \\
\rightarrow \\
1 \\
\end{array}
\]

- Not reflexive, since \(2 \not\in R_1 \)
- Symmetric since \((1, 2) \) and \((2, 1) \in R_1 \)
- Transitive since \((1, 2), (2, 1), (1, 1) \in R_1 \)
- Not transitive since \((2, 1) \) and \((1, 2) \in R_1 \), but \((1, 2) \notin R_1 \)

b.) \(R_2 = \{ (1, 2) \} \)

- Not reflexive since \(1 \notin R_2 \)
- Not symmetric since \((1, 2) \in R_2 \), but \((2, 1) \notin R_2 \)
- Transitive since there is no \((x, y) \) & \((y, z) \in R_2 \) (hyp false)

C.) \(R_3 = \{ (1, 1), (1, 2), (2, 1), (2, 2), (3, 3) \} \)

Picture:

\[
\begin{array}{c}
1 \quad 2 \\
\rightarrow \\
1 \\
\end{array}
\]

- Reflexive since \((1, 1), (2, 2), (3, 3) \in R_3 \)
- Symmetric since \((1, 2), (2, 1) \in R_3 \)
- Transitive since \((1, 2), (2, 1), (1, 1) \in R_3 \)
- Transitive since \((1, 2), (2, 2), (1, 2) \in R_3 \)
- Transitive since \((1, 2), (2, 1), (1, 1) \in R_3 \)
- Transitive since \((1, 2), (2, 2), (2, 2) \in R_3 \)
- Transitive since \((1, 2), (2, 1), (1, 1) \in R_3 \)
- Transitive since \((1, 2), (2, 1), (2, 1) \in R_3 \)

Using graph:
- \(R \) is reflexive on \(A \) iff every vertex has a loop.
- \(R \) is symmetric on \(A \) iff between any two vertices there are either no edges or an edge in both directions.
- \(R \) is transitive on \(A \) iff whenever there is an edge from \(x \) to \(y \) and an edge from \(y \) to \(z \), there is a direct edge from \(x \) to \(z \).

Ex 4: Construct a relation on \(A = \{1, 2, 3\} \) that is reflexive & transitive, but not symmetric.

Picture:

\[
\begin{array}{c}
1 \quad 2 \\
\rightarrow \\
1 \\
\end{array}
\]

Another example:

Another example:

\[
\begin{array}{c}
1 \quad 2 \\
\rightarrow \\
1 \\
\end{array}
\]

Another example:

\[
\begin{array}{c}
1 \quad 2 \\
\rightarrow \\
1 \\
\end{array}
\]

Another example:
Defn: A relation R on a set A is an equivalence relation on A iff R is reflexive, symmetric, and transitive.

So Ex 3 (c.) is an equivalence relation

Defn: Let R be an equivalence relation on a set A. For $x \in A$, the equivalence class of x determined by R is the set $x/R = \{y \in A : x R y\}$ (read “x mod R”)
(Also write $[x]$ or x instead of x/R)

The set $A/R = \{x/R : x \in A\}$ of all equivalence classes is A mod R.

Example 3: $R = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$ is an equivalence relation on $A = \{1, 2, 3\}$
Find all equivalence classes.

$[1] = 1/R = \{1, 2\}$
$[2] = 2/R = \{1, 2\}$
$[3] = 3/R = \{3\}$

Look for all arrows emanating from x

So $A/R = \{[1], [2], [3]\}$

Ex 5: a.) Show the relation $R = \{(x,y) \in A \times A : x^2 = y^2\}$ is an equivalence relation.
b.) Find all equivalence classes.

a. Reflexive: $x^2 = x^2$, so $(x,x) \in R$
Symmetric: if $(x,y) \in R$, then $x^2 = y^2 \Rightarrow y^2 = x^2$, so $(y,x) \in R$
Transitive: if $(x,y), (y,z) \in R$, then $x^2 = y^2$ and $y^2 = z^2$. Then $x^2 = y^2 = z^2$

b. $[1] = \{1, -1\}$
 $[2] = \{2, -2\}$
 So $R \equiv \{[x] : x \in \mathbb{R}\} = \mathbb{R}/R$

Note that any two equivalence classes are either equal or disjoint. So distinct equivalence classes never overlap.

Another very important equivalence class (from Sec 4.1):

Defn: Let m be a fixed positive integer. For $x, y \in \mathbb{Z}$, we say x is congruent to y modulo m iff m divides $x-y$. Write $x \equiv y \mod m$.

Ex 6: Let $m = 3$. $1 \equiv 4 \mod 3$, $1 \equiv -2 \mod 3$, etc

So $[1] = \{\ldots, -8, -5, -2, 1, 4, 7, 10, 13, \ldots\}$

Also $4 \equiv 1 \mod 3$, $4 \equiv 7 \mod 3$, etc, so $[4] = [1]$

Also, $10 \equiv 16 \mod 3$, $10 \equiv 7 \mod 3$, etc, so $[10] = [4] = [1]$

$[2] = \{\ldots, -4, -1, 2, 5, 8, \ldots\}$, $[0] = [3] = \{\ldots, -6, -3, 0, 3, 6, \ldots\}$

So $\mathbb{Z}/\equiv_m = \{[0], [1], [2]\}$ for $m = 3$. In general, $\mathbb{Z}/\equiv_k = \{[0], [1], \ldots, [k-1]\}$

Note: Sometimes people write $7 \mod 2 = 1$, which means when 7 is divided by 2, the remainder is 1, so $7 = 2 \cdot 3 + 1$. This equality only makes sense when $\text{rem}(7, 2) = 1$.

43