1. Recall that a regular icosahedron is a convex polyhedron having 12 vertices and 20 faces; the faces are congruent equilateral triangles. On each face of a regular icosahedron is written a nonnegative integer such that the sum of all 20 integers is 39. Show that there are two faces that share a vertex and have the same integer written on them.

2. For positive integers \(n \), let the numbers \(c(n) \) be determined by the rules \(c(1) = 1 \), \(c(2n) = c(n) \) and \(c(2n + 1) = (-1)^n c(n) \). Find the value of

\[
\sum_{n=1}^{2013} c(n)c(n + 2).
\]

3. Given a positive integer \(n \), what is the largest \(k \) such that the numbers 1, 2, \ldots, \(n \) can be put into \(k \) boxes so that the sum of the numbers in each box is the same? [When \(n = 8 \), the example \{1, 2, 3, 6\}, \{4, 8\}, \{5, 7\} shows that the largest \(k \) is at least 3.]

4. Is there an infinite sequence of real numbers \(a_1, a_2, a_3, \ldots \) such that

\[
a_1^m + a_2^m + a_3^m + \cdots = m
\]

for every positive integer \(m \)?