1. Consider the graph of \(y = x^2 \) in the xy-plane. There are two vectors of length 3, which are tangent to \(y = x^2 \) if you put their tails at \((1,1)\). Find either in \(i, j \) form. Solution: The slope of the graph at \((1,1)\) is 2. So we want a vector of slope 2. The vector \(\frac{2}{\sqrt{5}}(i + 2j) \) or \(\frac{2}{\sqrt{5}}i + \frac{4}{\sqrt{5}}j \) is one (and its negative is the other).

2. For which \(x \) does \(\sum_{n=1}^{\infty} \frac{(2x)^n}{n!} \) converge? Solution. This series converges when \(\lim_{n \to \infty} \left| \frac{(2x)^{n+1}}{(2x)^n} \cdot \frac{n}{n+1} \right| = |2x| < 1 \), and possibly at endpoints. The power series converges for \(-1 < 2x < 1 \) or \(-\frac{1}{2} < x < \frac{1}{2} \). Now we plug in \(x = -\frac{1}{2} \) and get \(\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \), which is the negative of the convergent alternating harmonic series, so it converges. We plug in \(x = \frac{1}{2} \) and get \(\sum_{n=1}^{\infty} \frac{1}{n} \), which is the divergent harmonic series. So the series converges for \(-\frac{1}{2} \leq x < \frac{1}{2} \).

3. Use the Maclaurin series for \(\cos(x) \) to approximate \(\int_0^1 \cos(x^2) \, dx \) where the absolute value of the error is less than 0.001. (Use the alternating series error bound - it’s quicker. You may leave your answer as an unsimplified sum and difference of fractions. Don’t go too far.) Solution. We have \(\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \) (we are not yet sure how far we need to write out the Maclaurin series). Thus \(\cos(x^2) = 1 - \frac{x^4}{2!} + \frac{x^8}{4!} - \frac{x^{12}}{6!} + \cdots \). So \(\int_0^1 \cos(x^2) \, dx = \int_0^1 \left(1 - \frac{x^4}{2!} + \frac{x^8}{4!} - \frac{x^{12}}{6!} + \cdots \right) \, dx = 1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \cdots \). Since \(13 \cdot 720 > 1000 \), we have \(\frac{1}{13 \cdot 720} < \frac{1}{1000} \) and so we can use \(\int_0^1 \cos(x^2) \, dx \approx 1 - \frac{1}{10} + \frac{1}{216} \).

4. a) Find the 4th Taylor polynomial to \(\cosh(x) \) at \(x = 0 \) (that’s hyperbolic cosine). Solution. Let \(f(x) = \cosh(x) \). Then \(f(0) = 1 \). \(f'(x) = \sinh(x) \) and \(f'(0) = 0 \). \(f''(x) = \cosh(x) \) and \(f''(0) = 0 \), etc. So \(p_4(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} \). Solution 2. We have \(\cosh(x) = \frac{e^x + e^{-x}}{2} = \frac{1}{2} \left((1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots) + (1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \cdots) \right) = \frac{1}{2} \left(2 + \frac{2x^2}{2!} + \frac{2x^4}{4!} \right) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} \).

b) Use the polynomial in part a) to estimate \(\cosh(1) \). Solution. \(\cosh(1) \approx p_4(1) = 1 + \frac{1}{2} + \frac{1}{24} \).

c) Use the Taylor remainder formula to give a good upper bound on the absolute value of the error in your answer to b). Use the fact that \(2 < e < 3 \) so that your answer does not contain \(e \). You may leave an unsimplified numerical answer. Solution. The absolute value of the error is equal to \(\left| \left. \frac{f^{(5)}(x)}{5!} \right| \right| \) for some \(c \) with \(0 \leq c \leq 1 \). The \(\frac{1}{5!} \) is fixed. So we need to find a good upper bound for \(|f^{(5)}(c)| \) where \(0 \leq c \leq 1 \). We have \(f^{(5)}(x) = \sinh(x) \). From the graph of \(\sinh(x) \), we know that \(|f^{(5)}(x)| \) is largest over the interval \(0 \leq x \leq 1 \) at \(x = 1 \) where \(\sinh(1) = e^{1/2} - e^{-1} \). We need to find an upper bound for \(e^{1/2} - e^{-1} \), not involving \(e \). I said that 3 is an upper bound for \(e^1 \). Now let’s find an upper bound for \(-e^{-1} \). We have \(2 < e < 3 \), so \(\frac{1}{2} > \frac{1}{3} > \frac{1}{e} \) and \(-\frac{1}{e} < -\frac{1}{3} \). So we use \(-\frac{1}{3} \) as our upper bound for \(-e^{-1} \). So our upper bound for \(e^{1/2} - e^{-1} \) is \(\frac{3 - (1/3)}{2} \). From the Taylor remainder formula an upper bound on the error is given by \(\frac{3 - (1/3)}{2} (1 - 0)^5/5! \) or \(\frac{(3 - (1/3))}{2} / 5! \).