Problem 1

Let \(f(x) = -x^3 - \cos x \) and \(p_0 = 1 \). Use two iterations of Newton’s method to approximate the root of \(f(x) \).

Solution

Iteration one:

\[
f'(x) = -3x^2 + \sin x
\]

Use the slope at \(x = p_0 = 1 \) to approximate the root for our next iteration.

\[
f(1) \approx -1.5403
\]
\[
f'(1) \approx -2.15853
\]
\[
p_1 = x_0 - \frac{f(x_0)}{f'(x_0)}
\]
\[
= 1 - \frac{-1.5403}{-2.15853}
\]
\[
= 0.2864
\]

Iteration two with \(p_1 = 0.2864 \):

\[
f(0.2864) \approx -0.982759
\]
\[
f'(0.2864) \approx 0.0364182
\]
\[
p_2 = x_1 - \frac{f(x_1)}{f'(x_1)}
\]
\[
= 0.2864 - \frac{-0.982759}{0.0364182}
\]
\[
= 27.98538
\]

Our final approximation is 27.9854. This is very inaccurate because the slope at our initial choice is nearly 0, pushing our estimation far from the actual root.

Problem 2

The derivative of a function can be approximated by

\[
f'(x) \approx \frac{-3f(x) + 4f(x + h) - f(x + 2h)}{2h}
\]

Show that the error of this approximation is \(O(h^2) \).

Solution

The Taylor series for \(f(x + h) \) and \(f(x + 2h) \) are as follows.

\[
f(x + h) = f(x) + hf'(x) + \frac{h^2}{2} f''(x) + \frac{h^3}{6} f'''(x) + Oh^4
\]
\[
f(x + 2h) = f(x) + 2hf'(x) + 2h^2 f''(x) + (4/3)h^3 f'''(x) + Oh^4
\]

Using those expansions to calculate the error of the approximation

Problem 2 continued on next page...
\[err_h = f'(x) - \frac{-3f(x) + 4f(x + h) - f(x + 2h)}{2h} \]

\[err_h = f'(x) - \frac{-3f(x) + 4 \left[f(x) + hf'(x) + \frac{h^2}{2} f''(x) + \frac{h^3}{6} f'''(x) + Ch^4 \right]}{2h} \]

\[= f'(x) - \frac{4hf'(x) + 2h^2 f''(x) + \frac{2h^3}{3} f'''(x) - 2hf'(x) - 2h^2 f''(x) - \frac{4h^3}{3} f'''(x) + Ch^4}{2h} \]

\[= f'(x) - \frac{2hf'(x) - \frac{2h^3}{3} f'''(x) + Ch^4}{2h} \]

\[= f'(x) - \frac{h^2}{3} f'''(x) + Ch^3 \]

If \(h \) is small, the first term will be much more significant than any other term in the expansion. Therefore, the error of this approximation is \(O(h^2) \).

Problem 3

Use the approximation for \(f'''(x) \) given in class to approximate the second derivative of

\[f(x) = \cos(e^{x^2} + x^3) \]

at \(x = 1 \) using \(h = .1, .05, .025 \). How does the decrease in error compare to the order of accuracy of the method (is the decrease what we should expect)?

Solution

The equation for \(f''(x) \) given in class:

\[f''(x) = \frac{f(x + h) - 2f(x) + f(x - h)}{h^2} \]

Using the specified inputs:

\[f''(1)_{0.1} = \frac{f(1 + 0.1) - 2f(1) + f(1 - 0.1)}{0.1^2} \approx 66.2173 \]

\[f''(1)_{0.05} = \frac{f(1 + 0.05) - 2f(1) + f(1 - 0.05)}{0.05^2} \approx 70.4458 \]

\[f''(1)_{0.025} = \frac{f(1 + 0.025) - 2f(1) + f(1 - 0.025)}{0.025^2} \approx 71.3510 \]

In class, we determined that the calculated error of this approach is \(O(h^2) \). Therefore, estimation with choice \(h_1 \) should have 4 times the error of an estimation with choice \(h_2 = (1/2)h_1 \).

\[\frac{f''(1)_{0.1} - f''(1)_{0.05}}{f''(1)_{0.05} - f''(1)_{0.025}} = \frac{66.2173 - 70.4458}{70.4458 - 71.3510} = 4.6713 \]
As expected, our approximation seems to have an accuracy of order $O(h^2)$.

\section*{Problem 4}

Use the composite trapezoidal rule and Simpson’s rule with $n = 4$ to approximate

$$\int_0^1 x^2 e^{-x}$$

What is the error of each method?

\textbf{Solution}

With $n = 4$, we will divide the interval $[0, 1]$ into 4 segments with $h = 0.25$. Using the composite trapezoidal rule:

$$\int_0^1 x^2 e^{-x} = \sum_{i=0}^{3} \frac{1}{4} \frac{f(x_i) + f(x_{i+1})}{2}$$

$$= \frac{1}{8} \left[f(0) + 2f(1/4) + 2f(1/2) + 2f(3/4) + f(1)\right]$$

$$= \frac{1}{8} \left[0 + \frac{1}{8e^{1/4}} + \frac{1}{2e^{1/2}} + \frac{9}{8e^{3/4}} + \frac{1}{e}\right]$$

$$\approx 0.1598$$

Using the composite Simpson’s rule:

$$\int_0^1 x^2 e^{-x} = \sum_{i=0}^{3} \frac{0.25}{3} \left[f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2})\right]$$

$$= \frac{1}{12} \left[0 + \frac{1}{4e^{1/4}} + \frac{1}{4e^{1/2}}\right] + \left(\frac{1}{4e^{1/2}} + \frac{9}{4e^{3/4}} + \frac{1}{e}\right)$$

$$\approx 0.1608$$

The actual solution is close to 0.1606. The error of the composite trapezoidal estimation is then about 0.0008. And the error using the composite Simpson’s rule is about 0.0002.

\section*{Problem 5}

Determine c_0, c_1, and c_2 such that

$$\int_0^2 p(x)dx = c_0 p(0) + c_1 p(1) + c_2 p(2)$$

for all polynomials $p(x)$ of degree 2 or less.

\textbf{Solution}

Simpson’s rule provides exact estimation for polynomials up to degree 3.

$$\int_0^2 p(x)dx \approx \frac{1}{3} \left[p(0) + 4p(1) + p(2)\right]$$

$$= \frac{1}{3} p(0) + \frac{4}{3} p(1) + \frac{1}{3} p(2)$$

Therefore, $c_0 = 1/3$, $c_1 = 4/3$, and $c_2 = 1/3$.

4